
Chapter 9
 Q os C os G rid e - Science

Infrastructure for
Large - Scale Complex

System Simulations
 Krzysztof Kurowski , Bartosz Bosak , Piotr Grabowski ,

 Mariusz Mamonski , and Tomasz Piontek
 Poznan Supercomputing and Networking Center, Poznan, Poland

 National Institute for Research in Computer Science and Control
(INRIA), Rennes, France

163

 George Kampis

 L á szl ó Guly á s

 Camille Coti

 Thomas Herault and Franck Cappello

 Collegium Budapest (Institute for Advanced Study), Budapest, Hungary

 Aitia International Inc. and Collegium Budapest
(Institute for Advanced Study), Budapest, Hungary

9.1 INTRODUCTION

 Grids and clouds could be viewed as large - scale computing systems with con-
siderable levels of hardware resources but lacking many of the the features
that make supercomputers so powerful. In particular, grids and clouds usually

Large-Scale Computing, First Edition. Edited by Werner Dubitzky, Krzysztof Kurowski,
Bernhard Schott.
© 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.

LIPN, CNRS-UMR7030, Université Paris 13, Villetaneuse, France

164 A TOPOLOGY-AWARE EVOLUTIONARY ALGORITHM

do not provide sophisticated support for parallel and multiphysics applications
with signifi cant interprocess communication requirements. Connected via
local and wide area networks, such big computing infrastructures typically rely
on an opportunistic marshalling of resources into coordinated action to meet
the needs of large - scale computing applications. Both grids and clouds are
often presented as a panacea for all kinds of computing applications, including
those that require supercomputing - like environments. However, this vision of
grids or clouds as virtual supercomputers is unattainable without overcoming
their performance, coallocation, and reliability issues. The demanding nature
of scientifi c simulations requires a new e - infrastructure that is able to simul-
taneously manage heterogeneous resources, such as computing resources,
storage, and networks to guarantee the level of quality of service demanded
by end users and their applications, especially a large number of legacy appli-
cations designed to run in parallel. To meet the requirements of large - scale
complex simulations, we have built a system capable of bringing supercomputer -
 like performance to advanced applications, including sophisticated parameter
sweep experiments, workfl ow - intensive applications, and cross - cluster parallel
computations. Our system (called QosCosGrid [QCG]) consists of a collection
of middleware services and external application tools and was fi rst introduced
by Kurowski et al. (2009). QCG is designed as a multilayered architecture that
is capable of dealing with computationally intensive large - scale, complex, and
parallel simulations that are usually too complex to run within a single com-
puter cluster or machine. The QCG middleware enables computing resources
(at the level of processor cores) from different administrative domains (ADs)
to be combined into a single powerful computing resource via the Internet.
Clearly, bandwidth and latency characteristics of the Internet may have an
effect on overall application performance of QCG - enabled applications.
However, the ability to connect and effi ciently control advanced applications
executed in parallel over the Internet is a feature that is highly appreciated
by QCG users.

 QCG could be viewed as a quasi - opportunistic supercomputer whose com-
putational performance exceeds the power offered by a single supercomputing
or data center (Kurowski et al., 2010). Nowadays, it is more common for
complex system simulations to rely on supercomputers because of the high
data volume and computing requirements of the individual computations, but
also because of the high communication overhead between the computation
tasks on individual elements. However, dedicated supercomputers for such
calculations are expensive to acquire and maintain. As a consequence, many
organizations do not have access to supercomputing facilities and rely local
computing resources. Recently, local computing clusters and other multicore
and multimachine systems have become the technology of choice for many
complex system modelers. However, with the advent of fl exible modeling tools,
complex system simulations have become even more diffi cult to manage. As
a result, local clusters are increasingly inadequate to satisfy the required com-
puting and communication needs. QCG aims to address this gap by facilitating
supercomputer - like performance and structure through effi cient cross - cluster

DISTRIBUTED AND PARALLEL SIMULATIONS 165

computations. Thus, new middleware services and application tools for end
users were developed and integrated to narrow the gap and to realize large -
 scale parallel and distributed computing e - infrastructures. The QCG imple-
mentation comprises a comprehensive framework for metascheduling and
managing topology - aware complex system applications. This framework
includes pluggable components that carry out the usual scheduling operations,
including the assignment of parallel processes on a time axis, clustering of
resources, and matching application requests 1 and available resources across
geographic dispersed locations. The QCG framework is highly fl exible as it is
composed of pluggable components that can be easily modifi ed to support
different scheduling and access policies to better maximize a diversity of utility
functions. Furthermore, the framework exploits novel algorithms for topology -
 aware coallocations that are required by parallel programming and execution
setups in production - level high - performance computing (HPC) environments,
such as the Message Passing Interface (MPI s), ProActive, or their hybrid
extensions linking programming models like OpenMP or CUDA.

 This chapter focuses on two enhanced and widely used parallel computing
environments: QosCosGrid - ProActive (QCG - ProActive) and QosCosGrid -
 OpenMPI (QCG - OMPI). QCG - OMPI 2 is designed to enable parallel applica-
tions to run across geographically widely distributed computational resources
owned and secured by different administrative organizations (Agullo et al.,
 2011). QCG - ProActive was successfully integrated with the Repast Suite, a very
popular Java - based, agent - based modeling and simulation platform (Guly á s et
al., 2008). A new version of the C + + implementation of Repast for supercom-
puting environments (called Repast HPC 3) will be supported by QCG.

 The remainder of this chapter is organized as follows. Section 9.2 presents
a short overview of validation scenarios; it also discusses the main require-
ments of complex systems and other demanding parallel applications and
classifi es these into “ templates. ” Section 9.2 gives a technical overview of
QCG - ProActive and QCG - OMPI. In Section 9.4 , we introduce the QCG
middleware services and their key capabilities relevant to end users. A number
of useful libraries and frameworks for application developers and resource
providers using QCG are described in Section 9.5 . Section 9.6 presents addi-
tional Web - based monitoring and troubleshooting tools for QCG, which are
already available on some production - level computational clusters and super-
computers. Finally, Section 9.7 concludes this chapter and discusses future
development plans.

9.2 DISTRIBUTED AND PARALLEL SIMULATIONS

 In this section, we briefl y introduce the main requirements of a variety of
complex system applications. To classify frequently occurring application

 3 Chapter 5 presents an overview of the Repast HPC framework and its implementation.

 2 More details on the QCG - OMPI middleware are presented in Chapter 8 of this volume.

 1 We have categorized these into six generic templates; see Section 9.2 .

166 A TOPOLOGY-AWARE EVOLUTIONARY ALGORITHM

patterns into communication templates, Guly á s et al. (2008) studied the inter-
action topologies of a wide range of complex system simulations. The proposed
communication templates were used to inform the design and implementation
of the QCG middleware. The QCG middleware controls a hierarchical struc-
ture of scheduler and map application requests to distributed computational
resources and networks to enable effi cient processing. Each template may be
accompanied by one or more template implementations and parameters that
determine how the information in the templates is to be used by the QCG
middleware. This feature is specifi cally designed to meet the needs of complex
system modelers. The modelers take advantage of this by identifying the com-
munication class their models belong to and then populate the templates with
the details of their specifi c simulation models and tasks. While this approach
may not achieve the most effi cient distributed implementation, it is likely to
reduce the implementation effort that would otherwise be required to realize
many simulations.

 Two special application patterns may be distinguished. In the fi rst, the
dependencies among components do not follow a predetermined structure
(i.e., they form a uniform random distribution) and change regularly over time
(e.g., dependencies are resampled prior to each update). The second special
case is when no communication occurs among complex system components.

 One might argue that these are overly simplifi ed examples and that a col-
lection of components (as in the second example) may not qualify as a system
at all. However, we believe this is merely a question of the level of abstraction
adopted. In the fi rst scenario, which is not as uncommon as it may seem, a
distributed parameter space search is arguably the most adequate implemen-
tation strategy, which is just an example of our second scenario: the individual
simulation runs can be viewed as noninteracting components. On the other
hand, more sophisticated parameter space search methods introduce depen-
dencies among individual runs by determining which parameter combination
to explore next on the basis of the results computed previously (i.e., sampling
in more “ turbulent ” parameter regions). In this case, a parameter space search
becomes a nontrivial complex system again, worthy of dependency analysis in
its own right. Dealing with more complex cases, our fi rst observation is that
static communication patterns allow for the direct application of distribution
algorithms. Therefore, we handle these cases separately from the dynamic
topologies. Next, we point out that the dependencies of the update functions
may be dependent on the components ’ states. In many cases, it is possible to
project the components ’ state information to a metric space and update depen-
dencies based on distance in this space. For example, if components are agents
moving in a space (in computational models often realized as a two - dimensional
lattice), then each agent state will (among other things) include the coordi-
nates of the agent. If in the model the agents interact only with the agents in
their vicinity, then the update dependencies of the components are distance
dependent. This spatial property of a complex system simulation, if present,
may be successfully exploited in determining the partitions of a distributed

DISTRIBUTED AND PARALLEL SIMULATIONS 167

implementation. It is worth noting, however, that complex systems may have
such a spatial property implicitly. For example, a social system where people
are likely to interact with like - minded partners may have this property where
the natural metric space is an abstract similarity space. Based on the observa-
tions above, we propose fi ve plus one communication templates that, as we
believe, represent commonly occurring classes of complex system simulations
(Fig. 9.1).

 Clearly, it is possible to identify many more templates or to refi ne the pre-
sented classifi cation scheme by introducing subclasses. However, we believe
the scheme of six main template categories (Fig. 9.1) is suffi cient to realize a
wide range of complex system simulations and to implement a fl exible approach
to support effi cient distributed computing strategies.

Template 0 (T0) of our classifi cation is the case where no interaction occurs
among components. Here, the component partitioning is only constrained by
load balancing considerations.

Template 5 (T5), the other extreme, is the case with random or unpredict-
able interaction among components. In general, we are not able to predict any
communication topology in advance so we recommend to run such compo-
nents independently. The four remaining cases are created at the intersection
of the spatial/nonspatial and static/dynamic properties.

 Figure 9.1 QosCosGrid communication templates that help users to understand and classify
main complex system requirements for large -scale simulations.

168 A TOPOLOGY-AWARE EVOLUTIONARY ALGORITHM

Template 1 (T1) (static networks) describes a nonspatial system with a static
communication pattern. It is assumed that the exact communication pattern
can be extracted from the system, or that it is defi ned explicitly. To the thus
defi ned communication graph, a variety of graph partitioning algorithms can
be applied, in particular, approaches proposed by Fjallstrom (1998) .

Template 2 (T2) (dynamic networks) introduces dynamism into Template
1. The assumption about the existence of a communication graph is main-
tained, but, in contrast to Template 5, it is assumed that the changes and their
frequency are defi ned by a graph transition function that provides enough
information to predict in advance communication requirements among dis-
tributed components. (Sometimes, it may be suffi cient to know that the level
of change in the communication graph is low, such that it is suffi cient to repar-
tition nodes at regular intervals, at every 10,000 time steps, for instance.) The
implementation approach we propose for such systems is the regular applica-
tion of classic graph repartitioning algorithms, that is, graph partitioning algo-
rithms that attempt to improve on an existing partition (Barnard, 1995).

Template 3 (T3) (static spatial systems) moves away from Template 1 along
the other axis. It maintains the assumption about a static communication
pattern but requires the spatial property. Prime examples of such systems are
cellular automata. Template 3 is the pattern that is geared toward a distributed
implementation; such implementations may be based on methods and algo-
rithms developed for distributed cellular automata (Mazzariol et al., 2000).

 Finally, Template 4 (T4) (dynamic spatial systems) assumes a spatial system
in which the communication pattern evolves over time. One example of such
a system is the case discussed earlier in which agents move in space and com-
municate with other agents in their immediate vicinity. To realize distribution
computing strategies for complex systems belonging to this template, we point
to algorithms specially developed for such systems using buffering and mes-
saging solutions and ways of predicting the speed of spatial movement (Scheutz
and Schermerhorn, 2006). It is worth pointing out that the fundamental
assumption of this template and thus a key to the successful implementation
of these solutions is that changes in spatial positions are slow relative to the
frequency of state updates.

9.3 PROGRAMMING AND EXECUTION ENVIRONMENTS

 The main goal in the development of the QCG middleware was to provide a
fl exible, effi cient, and secure distributed computing system that is able to deal
with large - scale simulations over distributed computing resources connected
via local and wide area networks (in particular via Internet connections). To
inform the development of the QCG middleware and to facilitate its testing
and validation, a number of concrete resource - demanding complex system
simulations have been identifi ed and classifi ed into communication templates
(Section 9.2). The initial set of use cases included the living simulation, evolu-

PROGRAMMING AND EXECUTION ENVIRONMENTS 169

tionary computation, and agent - based modeling. Recently, we added new
requirements arising from various multiscale and multiphysics use cases to be
support by QCG, for example, the multiscale modeling in computational bio-
medicine (Sloot and Hoekstra, 2010).

 From a development perspective, the applications were grouped into two
classes: (1) Java applications taking advantage of the ProActive library as the
parallelization technology and (2) applications based on ANSI C or similar
codes, which rely on the message passing paradigm. Based on these groups,
QCG was designed to support two parallel programming and execution envi-
ronments, namely, QCG - OpenMPI (aiming at C/C + + and Fortran parallel
applications developers) and QCG - ProActive (aiming at Java parallel applica-
tion developers).

 In this section, we briefl y describe those two programming and execution
environments together with a number of useful features that make them easy
to use and powerful for end users concerned with large - scale parallel simula-
tions of complex systems. All the presented technologies and integration
efforts described in the next two subsections were needed to faciliate cross -
 cluster execution of advanced applications in fi rewall - protected and Network
Address Translation (NAT) environments. Next, we also present our new
approach to a common problem in many grids and clouds regarding the simul-
taneous access and synchronization of a large number of computational
resources. We also provide an overview of the innovative cross - cluster deploy-
ment protocol developed within QCG, which is designed to simplify the man-
agement of complex parallel processes that are organized in groups and
hierarchies. Even though the QCG - managed cross - cluster parallel executions
are limited to the two enhanced parallel environments, other advanced man-
agement capabilities for applications are supported as well, including support
for workfl ows or parameter sweep jobs.

9.3.1 QCG-OMPI

 MPI is a de facto a standard in the domain of parallel applications. MPI pro-
vides end users with both the programming interface consisting of simple
communication primitives and the environment for spawning and monitoring
MPI processes. A variety of implementations of the MPI standard are avail-
able (both as commercial and open source). QCG uses the OpenMPI imple-
mentation of the MPI 2.0 standard. Of key importance are the intercluster
communication techniques that deal with fi rewalls and NAT. In addition, the
mechanism for spawning new processes in OpenMPI is integrated in the QCG
middleware. The extended version of the OpenMPI framework is referred to
as QCG - OMPI (Coti et al., 2008). The QCG - OMPI is as follows:

 1. Internally, QCG - OMPI improves the MPI library through a variety of
connectivity techniques to enable direct connections between MPI ranks
that are located in remote clusters, potentially separated by fi rewalls.

170 A TOPOLOGY-AWARE EVOLUTIONARY ALGORITHM

 2. Mechanisms going beyond the MPI standard were realized to accom-
modate QCG ’ s semiopportunistic approach; this was achieved by a new
interface to describe the actual topology provided by the Metascheduler.

 3. MPI collective operations were upgraded to be hierarchy aware and
were optimized for the grid.

 We briefl y present in this section each of these extensions and some results
that demonstrate the performance achievable with QCG - OMPI.

 Agullo et al. (2010) present two MPI applications that have been ported to
the QCG approach using QCG - OMPI. The fi rst is a simple ray tracing applica-
tion (Ray2mesh) based on a hierarchical master – worker scheme. Results from
performance tests are depicted in Figure 9.2 and are contrasted with the per-
formance of non - QCG implementations of this application. Using grid - aware
collective operations is a simple approach for porting an application to the
grid. Ray2mesh uses collective operations to communicate parameters and
collect partial results from the computing nodes. Figure 9.2 illustrates that the
performance obtained through Ray2mesh using grid - optimized collectives
(gray bars) is consistently outperforming the Vanilla implementation; the per-
formance gain increases as the number of processes increase (20% with 120
processes).

 Another key element of porting an application to the grid requires the
adaptation of communication and computation patterns that fi t the underlying
topology (black bars). The performance improvement at a larger number of
nodes or processors is outperforming topology - aware collective communica-

 Figure 9.2 QosCosGrid - OpenMPI (QCG - OMPI) performance on test - bed resources.

40

60

80

100

120

140

160

15 30 45 60 90 120

P
er

ce
nt

ag
e

of
 A

cc
el

er
at

io
n

w
.r

.t.
 V

an
ill

a
R

ay
2m

es
h

of nodes

Execution Time of Ray2mesh on a Grid

Grid-Optimized Collectives
Topology Aware

Vanilla

PROGRAMMING AND EXECUTION ENVIRONMENTS 171

tions (55% with 120 processes). We can see that small - scale executions show
lower performance than the Vanilla implementation. The reason for this is that
for a given number of processes, the grid - enabled implementation dedicates
more processes to control and scheduling (i.e., master processes) than the
Vanilla implementation. As a consequence, fewer processes are available for
computation (i.e., worker processes). However, it would be possible to run
worker processes on the same nodes as master processes since the latter are
carrying out input/output (I/O) operations, whereas the former is running
CPU - intensive operations.

 The port range technique establishes a direct connection between processes
that communicate with each other (Agullo et al., 2010). As a consequence, this
approach has no overhead on the performance of the communication library:
The bandwidth and the latency of the communications are the same as the
those obtained by the Vanilla communication libraries.

 Interconnecting processes through a proxy does not enable a direct con-
nection between them. It introduces an extra “ hop ” between the two processes;
hence, the process – process latency is the result of adding the two process –
 proxy latencies (Agullo et al., 2010). As a consequence, the physical location
of the proxy with respect to the processes is of major importance in order to
minimize this additional overhead. Besides, the proxy ’ s bandwidth is shared
between all the processes that are using it. If several processes are communi-
cating at the same time through a given proxy, the available bandwidth for
each process will be divided between them. Finally, performance evaluations
have been conducted on “ raw communications, ” and the impact of the perfor-
mance obtained by these techniques on benchmark applications has been
compared by Coti et al. (2008) .

 More comprehensive studies of QCG - OMPI and another grid - enabled
application are presented by Agullo et al. (2010) . A linear algebra factorization
has been adapted to the grid using a communication - avoiding algorithm with
grid - aware domain decomposition and a reduction algorithm that confi nes
the communications within sets of processes that match the underlying physi-
cal topology. The performance of this application shows good scalability on
the grid. Chapter 8 of this volume presents a topology - aware evolutionary
algorithm and its application to gene regulatory network modeling and
simulation.

9.3.2 QCG-ProActive

 The vast number of Java - based legacy applications in use prompted develop-
ments attempting to provide a similar functionality for parallel Java applica-
tions as MPI offers to C/C + + or Fortran parallel code. Instead of exploiting
existing Java bridges to MPI implementations, we decided to use the ProActive
Parallel suite (Baduel et al., 2006). The library uses the standard Java RMI
framework as a portable communication layer. With a reduced set of simple
primitives, ProActive (version 3.9 as used in QCG) provides a comprehensive

172 A TOPOLOGY-AWARE EVOLUTIONARY ALGORITHM

toolkit that simplifi es the programming of applications distributed on local
area networks, clusters, Internet grids, and peer - to - peer intranets for Java -
 based applications. However, when we designed QCG, the standard ProActive
framework did not provide any support for multiuser environments, advance
reservation, and cross - cluster coallocation. To meet the requirements of
complex system simulation applications and users, we developed extensions
to the ProActive library (called QCG - ProActive) with the following goals:

 • To preserve standard ProActive library properties (i.e., allow legacy
ProActive applications to be seamlessly ported to QCG)

 • To provide end users with a consistent QCG - Broker (see further) Job
Profi le schema as a single document for describing application parameters
required for execution as well as resource requirements (in particular,
network topology and estimated execution time)

 • To prevent end users from the necessity to have direct (i.e., over Secure
Shell [SSH]) access to remote clusters and machines

9.3.2.1 Cross-Cluster Deployment and Communication In the QCG
environment, additional services were required in order to support the spawn-
ing of parallel application processes on coallocated computational resources.
The main reason for this was that standard deployment methodologies used
in OpenMPI and ProActive relied on either RSH/SSH or specifi c local queuing
functionalities. Both are limited to single - cluster runs (e.g., the SSH - based
deployment methods are problematic if at least one cluster has worker nodes
that have private IP addresses). Those services are called the coordinators and
are implemented as Web services. Taking into account different existing cluster
confi gurations, we may distinguish the following general situations:

 1. A Computing Cluster with Public IP Addresses . Both the front end and
the worker nodes have public IP addresses. Typically, a fi rewall is used
to restrict access to internal nodes.

 2. A Computing Cluster with Private IP Addresses . Only the front - end
machine is accessible from the Internet; all the worker nodes have private
IP addresses. Typically, NAT is used to provide outbound connectivity.

 These cluster confi guration types infl uence intercluster communication
techniques supported in QCG, called port range and proxy respectively.

9.3.2.2 Port Range Technique The port range technique is a simple
approach that makes the deployment of parallel environments fi rewall friendly.
Most of the existing parallel environments use random ports by default to
listen for incoming TCP/IP traffi c. This makes cross - domain application execu-
tion almost impossible as most system administrators typically forbid to open
all inbound ports to the Internet due to security reasons. By forcing the parallel

PROGRAMMING AND EXECUTION ENVIRONMENTS 173

environments to use only a predefi ned, unprivileged range of ports, it is much
easier for administrators to confi gure the fi rewall in a way to allow incoming
MPI and ProActive traffi c without exposing critical system services to the
Internet.

 The port range technique is illustrated in Figure 9.3 . Each of the site admin-
istrators has to choose a range of ports to be used (e.g., [5000 – 5100] for the
parallel communication) and confi gure the fi rewall appropriately. One should
note that the port range technique solves the problem of the cross - cluster
connectivity for computing clusters where all worker nodes have public IP
addresses.

 Figure 9.3 A typical port range technique used by administrators of computational resources
for a cross -cluster communication.

174 A TOPOLOGY-AWARE EVOLUTIONARY ALGORITHM

 9.3.2.3 Proxy Technique In the second category of clusters where worker
nodes have private IP addresses, the port range technique is not suffi cient as
all the worker nodes are not addressable from the outside networks. Therefore,
in addition to the port range technique, which only shapes incoming traffi c, we
adopted a new proxy technique. In our approach, additional SOCKS proxy
services have to be deployed on front - end machines to route incoming traffi c
to the MPI and ProActive processes running inside clusters on local worker
nodes. The new proxy - based technique is depicted in Figure 9.4 .

 9.4 QCG MIDDLEWARE

 In a nutshell, the QCG middleware consists of two logical levels: grid level
and AD level. Grid - level services control, schedule, and generally supervise
the execution of end - user applications, which are spread over independent

 Figure 9.4 A new proxy technique for QCG -OMPI and QCG -ProActive based on SOCKS
servers in QosCosGrid.

QCG MIDDLEWARE 175

ADs. The AD represents a single resource provider (e.g., HPC or data center)
participating in a certain grid or cloud environment by sharing its computa-
tional resources with both local and external end users. The logical separation
of ADs corresponds to the fact that they are owned by different institutions
or resource providers. Each institution contributes its resources for the benefi t
of the entire grid or cloud while controlling its own AD and own resource
allocation/sharing policies. All involved organizations agree to connect their
resource pools exposed by AD - level services to a trusted upper - level middle-
ware, in this case, QCG middleware. Based on these assumptions, QCG mid-
dleware tries to achieve optimal resource utilization and to ensure the
requested level of quality of service for all the end users. The key component
of every AD in QCG is the QCG - Computing service, which provides remote
access to queuing system resources. The QCG - Computing service supports
advance reservation, parallel execution environments — OpenMPI and
ProActive, with coordinators being responsible for the synchronization of
cross - cluster executions — and data transfer services for managing input and
output data. Another relevant service at the AD level is in charge of notifi ca-
tion mechanisms: It is called QCG - Notifi cation. All AD - level services are
tightly integrated and connected to the grid - level services in QCG. There
are two critical services at the grid - level: the QCG - Broker, which is a metas-
cheduling framework controlling executions of applications on the top of
queuing systems via QCG - Computing services, and the Grid Authorization
Service (GAS), which offers dynamic, fi ne - grained access control and enforce-
ment for shared computing services and resources. From an architectural
perspective, GAS can also be treated as a trusted single logical point for defi n-
ing security policies. The overall QCG architecture is depicted in Figure 9.5 .

9.4.1 QCG-Computing Service

 QCG - Computing (the successor of the SMOA Computing and OpenDSP
projects) is an open architecture implementation of the SOAP Web service
for multiuser access and policy - based job control routines by various queuing
and batch systems managing local computational resources. This key service
is using Distributed Resource Management Application API (DRMAA) to
communicate with the underlying queuing systems (Troger et al., 2007). QCG -
 Computing has been designed to support a variety of plug - ins and modules
for external communication as well as to handle a large number of concurrent
requests from external clients and services, in particular, QCG - Broker and
GAS. Consequently, it can be used and integrated with various authentication,
authorization, and accounting services or to extend capabilities of existing
e - infrastructures based on UNICORE, gLite, Globus Toolkit, and others.
QCG - Computing service is compliant with the Open Grid Forum (OGF) HPC
Basic Profi le specifi cation, which serves as a profi le over OGF standards like
Job Submission Description Language (JSDL) and Open Grid Services
Architecture (OGSA) Basic Execution Service (OGF, 2007). In addition, it

176 A TOPOLOGY-AWARE EVOLUTIONARY ALGORITHM

offers remote interfaces for advance reservation management and supports
basic fi le transfer mechanisms. QCG - Computing was successfully tested with
the following queuing systems: Sun Grid Engine (SGE), Platform LSF, Torque/
Maui, PBS Pro, Condor, and Apple XGrid. Therefore, as a crucial component
in QCG, it can be easily set up on the majority of computing clusters and
supercomputers running the aforementioned queuing systems. Currently,
advance reservation capabilities in QCG - Computing are exposed for SGE,
Platform LSF, and Maui (a scheduler that is typically used in conjunction with
Torque). Moreover, generic extensions for advance reservation have been
proposed for the next DRMAA standard release.

 9.4.2 QCG - Notifi cation and Data Movement Services

 QCG - Notifi cation (the successor of SMOA Notifi cation) is an open source
implementation of the family of WS - Notifi cation standards (version 1.3)
(OASIS Standards, 2008). In the context of QCG, it is used to extend features
provided by QCG - Computing by adding standards - based synchronous and
asynchronous notifi cation features. QCG - Notifi cation supports the topic - based
publish/subscribe pattern for asynchronous message exchange among Web
services and other entities, in particular, services or clients that want to be inte-
grated with QCG. The main part of QCG - Notifi cation is based on a highly
effi cient, extended version of the Notifi cation Broker, managing all items par-
ticipating in notifi cation events. Today, QCG - Notifi cation offers sophisticated
notifi cation capabilities, for example, topic and message content notifi cation

 Figure 9.5 The overall QosCosGrid architecture and its main services supporting QCG -OMPI
and QCG -ProActive.

QCG MIDDLEWARE 177

fi ltering and pull - and - push styles of transporting messages. QCG - Notifi cation
has been integrated with a number of communication protocols as well as
various Web service security mechanisms. The modular architecture of QCG -
 Notifi cation makes it relatively straightforward to develop new extensions and
plug - ins to meet new requirements. In QCG, for example, it was used for bro-
kering notifi cation messages about the job state changes linking QCG - Broker
and QCG - Computing. All instances of the QCG - Computing service act as
information producers , while the QCG - Broker service is the consumer of job
notifi cations in QCG. More sophisticated confi gurations of QCG - Notifi cation
with both QCG middleware services and external entities based on service -
 oriented architecture patterns are also possible. Table 9.1 presents the result of
a functional comparison between QCG - Notifi cation and other popular notifi -
cation frameworks, namely, Apache ServiceMix (version 3.3.1), IBM WebSphere
(version 7.0) and Globus Toolkit (version 4.2). A set of analyzed functional
features covers most of the WS - Notifi cation concepts, and it allows us to high-
light fundamental differences among existing standards - compliant notifi cation
systems.

 As many other e - infrastructures controlled by middleware services, QCG
takes advantage of the GridFTP protocol for large data transfer operations, in
particular, to stage in and stage out fi les for advanced simulations. GridFTP is
a high - performance, secure, reliable data transfer protocol optimized for high -
 bandwidth wide area networks. It is a de facto standard for all data transfers
in grid and cloud environments and extends the standard FTP protocol with
functions such as third - party transfer, parallel and striped data transfer, self -
 tuning capabilities, X509 proxy certifi cate - based security, and support for reli-
able and restartable data transfers. The development of GridFTP is coordinated
by the GridFTP Working Group under the hood of the OGF community.

9.4.3 QCG-Broker Service

 QCG - Broker (formerly named GRMS) was designed to be an open source
metascheduling framework that allows developers to build and easily deploy

TABLE 9.1 Functional Comparison of Leading Notifi cation Frameworks

QCG-Notifi cation ServiceMix WebSphere GT 4.x

Language Ansi C Java Java C/Java
Type Brokered Brokered Brokered Base
Topic namespaces Yes No Yes Yes (fl at only)
Dialect Full Simple Full Simple
Dynamic topics Yes*) Yes Yes Yes
Message fi lters Yes Yes Yes No
Pull points Yes Yes Yes No
Core functions QCG-Core,

XMPP
JBI services
Bus JMS
JMS

Enterprise
Service bus

Java WS -Core
C WS -Core

178 A TOPOLOGY-AWARE EVOLUTIONARY ALGORITHM

resource management systems to control large - scale distributed computing
infrastructures running queuing or batch systems locally. Based on dynamic
resource selection, advance reservation and various scheduling methodologies,
combined with feedback control architecture, QCG - Broker deals effi ciently
with various metascheduling challenges, for example, coallocation, load bal-
ancing among clusters, remote job control, fi le staging support, or job migra-
tion (Kurowski et al., 2004). The main goal of QCG - Broker was to manage
the whole process of remote job submission and advance reservation to various
batch queuing systems and subsequently to underlying clusters and computa-
tional resources. It has been designed as an independent core component for
resource management processes that can take advantage of various low - level
core and grid services and existing technologies, such as QCG - Computing,
QCG - Notifi cation, or GAS, as well as various grid middleware services such
as gLite, Globus, or UNICORE. Addressing various demanding computa-
tional needs of large - scale complex simulations, which in many cases can
exceed capabilities of a single cluster, the QCG - Broker can fl exibly distribute
and control applications onto many computing clusters or supercomputers on
behalf of end users. Moreover, owing to some built - in metascheduling proce-
dures, it can optimize and run effi ciently a wide range of applications while at
the same time increasing the overall throughput of computing e - infrastructures.
Advance reservation mechanisms are used to create, synchronize, and simul-
taneously manage the coallocation of computing resources located at different
ADs. The XML - based job defi nition language Job Profi le makes it relatively
easy to specify the requirements of large - scale parallel applications together
with the complex parallel communication topologies. Consequently, applica-
tion developers and end users are able to run their experiments in parallel
over multiple clusters.

 Defi ned communication topologies may contain defi nitions of groups of
MPI or ProActive processes with resource requirements, using resource and
network attributes for internal and external group - to - group communication.
Therefore, various application - specifi c topologies such as master – slave, all - to -
 all, or ring are supported in the Job Profi le language. The Job Profi le language
has been adopted for complex system modeling and simulation purposes else-
where (see, e.g., Chapter 8 of this volume or the work reported by Agullo
et al., 2010).

 To meet the requirements of complex scenarios consisting of many coop-
erating and possibly concurrent applications, for example, exchanging steering
parameters in multiscale simulation studies, QCG - Broker is able to deal
with complex applications defi ned as a set of tasks with precedence relation-
ships (workfl ows). The workfl ow model built into QCG - Broker is based
on direct acyclic graphs. In this approach, an end user specifi es in advance
precedence constraints of a task in the form of task – state relationships .
What differentiates QCG - Broker from other middleware services supporting
workfl ows is that every single task can be connected not only with input

ADDITIONAL QCG TOOLS 179

TABLE 9.2 Comparison of QCG -Broker with Other Leading Brokering and Scheduling
Services

Feature/System QCG-Broker Moab Grid Suites CSF4 GUR HARC

Negotiation
protocol

Enhancement
1-phase
commit

— None Reserve
Cancel

Paxos

Economic support Yes No No No No
Coallocation Yes Yes No Yes Yes
Topology-aware

coallocation
Yes No No No No

Scheduling on time
axis

Yes Yes No No No

Local schedulers
support

LSF Torque
PBSPro SGE
SLURM

OpenPBS

Torque PBSPro
LSF SGE SLURM
OpenPBS

LoadLeveler

LSF PBS
Condor
SGE

Catalina LoadLeveler
PBSPro LSF
Torque

DRMAA support Yes Yes No No No
Open source code Yes No Apache GPL OpenSource
OpenDSP support Yes No No No No

or output fi les but may also be triggered by predefi ned conditional rules or by
the status of one or more jobs or tasks. Additionally, QCG - Broker supports
parameter sweeps and allows to start in a single call multiple instances of
the same application with different sets of arguments. For each task in the
collection, the value of one or more of the task parameters may be changed
in some predefi ned fashion, thus creating a parameter space. This is a very
useful feature and gives the end user an easy way to search the parameter
space for the concrete set of parameters that meet the defi ned criteria.
QCG - Broker is a unique feature to allow end users to defi ne multidi-
mensional parameter spaces. Moreover, QCG - Broker has been success-
fully integrated with the Grid Scheduling SIMulator (GSSIM) to perform
advanced metascheduling optimization, tuning, or reconfi guration experi-
ments (Kurowski et al., 2007). Table 9.2 depicts the main features of QCG -
 Broker and compares these to other metascheduling frameworks deployed in
e - infrastructures.

9.5 ADDITIONAL QCG TOOLS

9.5.1 Eclipse Parallel Tools Platform (PTP) for QCG

 The PTP is intended to address a major defi ciency in the development
of parallel programs, namely, the lack of a robust open source targeted

180 A TOPOLOGY-AWARE EVOLUTIONARY ALGORITHM

development environment with tools that assist in software development for
parallel applications. The PTP offers a variety of useful features for parallel
application developers, in particular, a parallel integrated development envi-
ronment, a scalable debugger, integration with parallel tools, and interaction
with parallel systems. Currently, the main supported languages are C/C + + and
Fortran. We used the Eclipse PTP framework to support QCG - OMPI and
remote job submission, debugging, and monitoring using the QCG middle-
ware, in particular, QCG - Computing services.

 In order to connect to QCG - Computing services, it is necessary to provide
connection data. These are inserted by the user via a graphical user interface
(GUI) wizard page from the QCG RM plug - in. As the wizard is accepted, the
data reach an object from class QCGServiceProvider responsible for
keeping the data persistent. When the Eclipse PTP requests a connection
name for the fi rst time (which it is going to use for the connection), a new
instance from the QCGConnection class is created and registered at
QCGConnectionManager . This object contains the Web service ports for
rsync , staging and activity management. Once the user requests to start the
Resource Manager, classes QCGResourceManager and QCGRuntimeSystem
are created and certain methods are called. These classes obtain basic data
about the system (by calling getFactoryAttributes()) and display them
in Eclipse ’ s parallel run - time perspective. A generic architecture of a new
Eclipse PTP plug - in available for QCG users and developers is depicted in
Figure 9.6 .

 9.6 Q OSCOSGRID SCIENCE GATEWAYS

 The advanced Web - based graph - and multimedia - oriented user interfaces
designed for scientists and engineers could change the way end users collabo-
rate, deal with advanced simulations, share results, and work together to solve
challenging problems. Moreover, future science and engineering gateways will
infl uence the way end users will access not only their data but also control and
monitor demanding computing simulations over the Internet. To allow end
users to interact remotely with future supercomputers and large - scale comput-

 Figure 9.6 Eclipse PTP plug -in for parallel application development and debugging integrated
with QosCosGrid.

QOSCOSGRID SCIENCE GATEWAYS 181

ing environments in a more visual manner, we developed a Web tool called
Vine Toolkit. Russell et al. (2008) demonstrated that this tool can be used as
a core Web platform for various science gateways integrated with various
e - infrastructures based on UNICORE, gLite, or Globus Toolkit middleware
services. The Vine Toolkit is a modular, extensible, and easy - to - use tool as well
as a high - level application program interface for various applications, visual-
ization components, and building blocks to allow interoperability between a
wide range of grid and supercomputing technologies. Similar to stand - alone
GUIs, it supports Adobe Flex and BlazeDS technologies, allowing the creation
of advanced Web applications. Additionally, the Vine Toolkit has been inte-
grated with well - known open source Web frameworks, such as Liferay and
GridSphere. Using the enhanced version of Vine Toolkit, we created a new
Science Gateway called QCG Gateway. The QosCosGrid Science Gateway
consists of a general part showing and monitoring computational resource
characteristics as well as a set of domain - specifi c Web applications developed
for certain complex system use cases. With these tools, end users are able to
use only Web browsers to create and submit their complex simulations, monitor
their progress, and access and analyze the results generated (Fig. 9.7).

 The QCG e - infrastructure has been deployed on a large number of com-
putational resources provided by various research centers, such as the Poznan
Supercomputing and Networking Center (Poland), National Institute for
Research in Computer Science and Control (INRIA) (France), and Dortmund
University of Technology (Germany). A number of complex systems scientists

 Figure 9.7 Example complex system simulations executed and controlled via the Web -based
QosCosGrid Science Gateway.

182 A TOPOLOGY-AWARE EVOLUTIONARY ALGORITHM

and modelers have performed various tests and benchmarks using QCG solu-
tions. The QCG Gateway displays monitoring and resource information about
the underlying infrastructure and provides a feedback not only for end users
but also for resource owners and administrators (Fig. 9.8). Various monitoring
tests are invoked periodically and their results are presented as graphical maps
and diagrams in a Web browser. The fi rst two maps show results of bidirec-
tional tests of cross - domain QCG - OMPI and QCG - ProActive applications,
measuring bandwidth and latency among front - end machines of computing
clusters in different ADs connected via the Internet. We have also added useful
Gantt charts displaying local and cross - domain job execution information as
well as information on advance reservation and coallocation of computing
resources. Both the test - bed monitoring and GUI layers were developed using
Adobe Flex - based components.

 9.7 DISCUSSION AND RELATED WORK

 Existing grid e - infrastructures, such as TeraGrid in the United States and
CERN ’ s Enabling Grids for E - sciencE (EGEE)/LCG in Switzerland, Grid ’ 5000
in France, D - Grid in Germany, or PL - GRID in Poland, provide thousands of

 Figure 9.8 Example coallocations using advance reservation QosCosGrid capabilities for
cross-cluster parallel simulations.

DISCUSSION AND RELATED WORK 183

computational resources, offering facilities similar to large - scale parallel com-
puting production environments. One of the critical components for the execu-
tion of advanced applications in such environments is the metascheduler . Its
main role is to schedule complex applications that end users wish to run on
available computational resources and to guarantee “ topology awareness. ”
Topology awareness implies that matching of the resource offers and requests
must take into account not only the computational characteristics of the
resources but also their interconnections. To the best of our knowledge, these
kinds of requirements have not been addressed by any of the existing metas-
chedulers. Thus, the majority of the up - to - date computing e - infrastructures
support relatively easy metascheduling strategies, in particular, easy matching -
 based techniques, without advance reservation and coallocation of computa-
tional resources. Typical systems include the EGEE Workload Management
System, eNANOS, and GridWay. The relatively simple metascheduling
approach adopted by these systems is suffi cient to execute “ embarrassingly
parallel ” applications, such as parameter sweeps or MPI applications, within a
single computing cluster. This approach limits end users to the computing
power of one computing cluster, which may not be suffi cient to perform more
sophisticated complex system simulations. For cross - cluster MPI and ProActive
applications, the requested and offered network topology cannot be ignored,
meaning that topology - aware scheduling, together with coallocation capabili-
ties, must be employed. These features have been successfully implemented
and integrated to provide a new QCG e - infrastructure for complex system
modelers, scientists, and end users.

 Emerging e - infrastructures offer new quality - of - service capabilities as well
as new hybrid programming and execution environments such as MPI/
OpenMP and MPI/CUDA parallel hybrids. Taking advantage of the results
presented in this chapter, the adaptation of QCG solutions to many - core
systems would be an interesting area of our future research. Another natural
direction of future research and development would be to explore new opti-
mization criteria, for example, energy consumption or heating, as these have
become critical in large distributed computing environments. As virtualization
techniques of operating systems and embedded applications are maturing,
another fruitful avenue of future research revolves around effi cient resource
management techniques using the virtual machine concept. Moreover, the
recent technological shift from the area of multicore to many - core systems
and systems - on - the - chip introduced another scheduling layer at the operating
system level. Future large - scale computing systems will have to deal with a
hierarchy of complex static and reconfi gurable computing structures, and new
resource management techniques need to be invented to control such systems
on a very low level of granularity.

 Ethernet technology has been the dominant data link protocol in local area
networks for many years, and it is widely offered as a customer service, but it
was not designed for large carrier - scale transport networks. However, because
of its suitability for data and multimedia applications, its fl exibility, and its

184 A TOPOLOGY-AWARE EVOLUTIONARY ALGORITHM

widespread use, many carriers now consider Ethernet as a potential conver-
gence solution for next - generation networks. Research grid networks link
distributed computing resources to perform highly demanding computations
needing vast processing capability. To make optimum use of the computing
resources, high - capacity, low - latency connections are needed, and complex
optimization algorithms need to calculate the optimal exploitation of the
computing resources, taking into account factors such as the data rate offered
by the connecting links and their latency.

 Currently, QCG is extensively tested by its developers and by external
research communities interested in new computing e - infrastructures for dis-
tributed multiscale simulations across disciplines. Driven by seven challenging
applications from fi ve representative scientifi c domains (fusion, clinical deci-
sion making, systems biology, nanoscience, and engineering), they will deploy
a computational science environment for distributed multiscale computing
under the MAPPER 4 project based on QCG technologies. Various extensions
proposed to QCG will result in high - quality components for today ’ s e - infra-
structures in Europe by enabling distributed execution of two modes
(loosely and tightly coupled) of multiscale computing in a user - friendly and
transparent way.

REFERENCES

 E. Agullo , C. Coti , J. Dongarra , et al. QR factorization of tall and skinny matrices in a
grid computing environment . In Proc. of the 24th IEEE Int ’ l Parallel and Distributed
Processing Symposium , 2010 .

 E. Agullo , C. Coti , T. Herault , et al. QCG - OMPI: MPI applications on grids . Future
Generation Computer Systems , 27 (4): 357 – 369 , 2011 .

 L. Baduel , G. Baude , D. Caromel , et al. Programming, deploying, composing, for the
grid . In J. C. Cunha and O. F. Rana , editors, Grid Computing: Software Environments
and Tools , pp. 205 – 229 , London : Springer - Verlag , 2006 .

 S. T. Barnard . PMRSB: Parallel multilevel recursive spectral bisection . In Proc. of the
1995 ACM/IEEE Conference on Supercomputing, Supercomputing ’ 95 , New York :
 ACM , 1995 .

 C. Coti , T. Herault , S. Peyronnet , et al. Grid services for MPI . In ACM/IEEE, editor,
Proc. of the 8th IEEE Int ’ l Symposium on Cluster Computing and the Grid
(CCGrid’ 08) , pp. 417 – 424 , Lyon, France : IEEE Computer Society , 2008 .

 P. - O. Fjallstrom . Algorithms for graph partitioning: A survey . Linkoping Electronic
Articles in Computer and Information Science , 3 (10): 1 – 34 , 1998 .

 L. Guly á s , G. Szemes , G. Kampis , et al. A modeler - friendly API for ABM partitioning .
In Proc. of the ASME 2009 Conference , San Diego, California, USA, 2008 .

 K. Kurowski , W. de Back , W. Dubitzky , et al. Complex System Simulations with
QosCosGrid , Vol. 5544 , pp. 387 – 396 , Berlin and Heidelberg : Springer , 2009 .

 4 http://www.mapper - project.eu .

REFERENCES 185

 K. Kurowski , B. Ludwiczak , J. Nabrzyski , et al. Dynamic grid scheduling with job migra-
tion and rescheduling in the GridLab resource management system . Scientifi c
Programming , 12 : 263 – 273 , 2004 .

 K. Kurowski , J. Nabrzyski , A. Oleksiak , et al. Grid scheduling simulations with GSSIM .
In Proc. of the 13th Int ’ l Conference on Parallel and Distributed Systems — Vol. 2 ,
pp. 1 – 8 , Washington, DC : IEEE Computer Society , 2007 .

 K. Kurowski , T. Piontek , P. Kopta , et al. Parallel large - scale simulations in the pl - grid
environment. In M. Stroinski et al., editors, Computational Methods in Science and
Technology , pp. 47 – 56 , Poznan, Poland , 2010 .

 M. Mazzariol , B. A. Gennart , and R. D. Hersch . Dynamic load balancing of parallel
cellular automata , 2000 .

 OASIS Standards . OASIS web services notifi cation technical committee , 2008 . URL
 http://www.oasis - open.org .

 OGF . Open grid forum , 2007 . http://ogf.org .
 M. Russell , P. Dziubecki , P. Grabowski , et al. The Vine Toolkit: A Java framework for

developing grid applications . In R. Wyrzykowski et al., editors, Parallel Processing
and Applied Mathematics, volume 4967 of Lecture Notes in Computer Science ,
pp. 331 – 340 , Berlin and Heidelberg : Springer , 2008 .

 M. Scheutz and P. Schermerhorn . Adaptive algorithms for the dynamic distribution and
parallel execution of agent - based models . Journal of Parallel Distributed Computing ,
 66 : 1037 – 1051 , 2006 .

 P. M. A. Sloot and A. G. Hoekstra . Multi - scale modelling in computational biomedicine .
Briefi ngs in Bioinformatics , 11 (1): 142 – 152 , 2010 .

 P. Troger , H. Rajic , A. Haas , et al. Standardization of an API for distributed resource
management systems . In Proc. of the 7th IEEE Int ’ l Symposium on Cluster Computing
and the Grid, CCGRID ’ 07 , pp. 619 – 626 , Washington, DC : IEEE Computer Society ,
 2007 .

